

American Society of Plumbing Engineers

Plumbing
Engineering &
Design
Handbook
of
Tables

American Society of Plumbing Engineers
8614 W. Catalpa Avenue, Suite 1007
Chicago, IL 60656-1116

Shock Intensity

The intensity of a pressure wave is directly related to valve closure time.

Joukowsky's Formula:

Equation

$$P_r = \frac{w a v}{144 g}$$

where

P_r = Pressure rise above flow pressure, psi (kPa)

w = Specific weight of liquid, for water 62.4 lb/ft³ (1,000 kg/m³)

a = Velocity of pressure wave, fps (m/s)

v = Change in flow velocity, fps (m/s)

g = Acceleration due to gravity, 32 ft/s² (9.8 m/s²)

5

The value of "a"

Equation

$$a = \frac{A_w}{(1 + KB)^{1/2}}$$

where

A_w = Velocity of sound in water, at room temperature approximately 4,900
fps (1,490 m/s)

K = Ratio of modulus of elasticity of the fluid to the modulus of elasticity of
the pipe

B = Ratio of pipe diameter to pipe wall thickness

SIZING WATER PIPING

Hazen-Williams Formula

Equation

$$f = 0.2082 \left(\frac{100}{C} \right)^{1.85} \left(\frac{q^{1.85}}{d^{4.8655}} \right)$$

where

f = Friction head, ft of liquid/100 ft of pipe (m/100m)

C = Surface roughness constant (dimensionless)

q = Fluid flow, gpm (L/s)

d = Inside diameter of pipe, in. (mm)

Darcy-Weisbach Formula

Equation

$$h_f = f \left(\frac{L}{D} \right) \left(\frac{V^2}{2g} \right)$$

$$p = h_f \times \left(\frac{\phi}{144} \right)$$

where

h_f = friction head loss, ft of fluid

p = friction head loss, psi

f = coefficient of friction or friction factor, dimensionless (from Colebrook equation or Moody diagram)

L = length of pipe, ft

D = inside diameter of pipe, ft

V = average velocity of flow, fps

g = gravitational acceleration, 32.2 ft/sec/sec

ϕ = lbs/ft³

5

For turbulent flow, "f" can be determined by the C.F. Colebrook Formula, Moody diagrams, or from manufacturers' data or various handbooks.

Colebrook Formula

Equation

$$\frac{1}{\sqrt{f}} = -2 \log_{10} \left[\left(\frac{\epsilon}{3.7D} \right) + \left(\frac{2.51}{R\sqrt{f}} \right) \right]$$

also, $R = \frac{VD}{V}$

where

R = Reynolds number (Figure 5-9)

f = Friction Factor (dimensionless)

ϵ = Absolute roughness, in ft

D = Inside diameter of pipe, ft

V = Average pipe velocity, ft/sec

ν = Kinematic Viscosity, ft²/sec

Pressure Loss in Pipe Fittings and Valves

Equation

$$\Delta h = \frac{KV^2}{2g}$$

$$\Delta P = \left(\frac{Q}{C_v} \right)^2 S.G.$$

where

Δh = Fluid head (ft)

V = Velocity (ft/sec)

g = Acceleration of gravity (ft/sec²)

P = psi

Q = gpm

SG = Specific gravity (water = 1.0); for water, $\Delta h \times 0.43 = \text{psi}$

C_v = Flow through a valve where pressure loss of 1 psi occurs

Hazen-Williams Coefficient	
Material	C
Asbestos Cement	140
Black Steel, Dry	100
Black Steel, Wet	120
Brass	130 - 160
Brick sewer	100
Cast-Iron - new unlined (CIP)	130
Cast-Iron 10 years old	107 - 113
Cast-Iron 20 years old	89 - 100
Cast-Iron 30 years old	75 - 90
Cast-Iron 40 years old	64-83
Cast-Iron, asphalt coated	100
Cast-Iron, cement lined	140
Cast-Iron, bituminous lined	140
Cast-Iron, coal-tar enamel lined	145-150
Cast-Iron, wrought plain	100
Cast-Iron, riveted	110
Cement Lined Cast or Ductile Iron	140
Concrete	140
Concrete, Steel forms	140
Concrete, Wooden forms	120
Concrete, centrifugally spun	135
Copper	130 - 160
Copper (NFPA 13)	150
CPVC (NFPA 13)	150
Ductile Iron Pipe (DIP)	140
Fiber	140
Fibre-reinforced plastic (FRP)	150
Galvanized steel	120 - 140
Glass	130 - 160
Lead	130 - 140

*C=factor (friction loss coefficient) - the higher the C factor, the smoother the pipe.

Hazen-Williams Coefficient	
Material	C
PEX (NFPA 13)	150
Plastic	130 - 160
Polyethylene, PE, PEH	140 -160
PVC, CPVC	140 - 160
Smooth Pipes	150
Steel new unlined	140 - 150
Steel	120 - 140
Steel (NFPA13)	120
Steel. Galv. (NFPA13)	120
Steel, welded and seamless	120 - 140
Steel, interior riveted, no projecting rivets	100
Steel, projecting girth rivets	100
Steel, vitrified, spiral-riveted	90 - 100
Steel, corrugated	60
Tin	130
Unlined Cast or Ductile Iron	100
Vitrified Clays	110 -140
Wood Stave	110 - 120

2